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Waves and Imaging Instruments 
Lectures 9-14 
 
3 Fourier Transforms 
 
We now come to a mainly mathematical interlude, where we consider the 
decomposition of an arbitrary waveform into sine waves. This is known 
variously as Harmonic Analysis, Spectral Analysis or Fourier Analysis, 
and is the basis for the study of many problems in science. It is a 
powerful tool for analysing standing waves, interference, diffraction and 
imaging systems, which is why it is in this course, but you will 
undoubtedly find it useful in many other fields. 
 
3.1 A word on notation 
 
There are a lot of different ways of writing a sine wave of a given 
amplitude and phase, amongst them 
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I will tend to mostly use the form 
 

( )]exp[ tiD ωℜ  
 
where ℜ  denotes taking the real part, and D is a complex constant which 
encodes both amplitude and phase. Some authors just write ]exp[ tiD ω  
and implicitly assume taking the real part. While this does make the 
formulae look simpler, I will try to avoid using this notation, because you 
can otherwise forget the implicit ( )ℜ . 
 
3.2 Introduction: why analyse things in terms of sine waves? 
 
Fourier Transforms are used in many places, from financial analysis, 
through MP3 recorders and image compression to radar systems, 
temperature diffusion, and many more fields.  The question may arise as 
to why decomposing things into sine waves is applicable in so many 
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different areas. The first part of the answer is “because we can”; i.e. it can 
be shown that any function (with a few unphysical exceptions) can be 
decomposed into a sum of sine waves. However, this is not a property 
unique to sine waves, for example it is also true that most functions can 
be decomposed into a sum of powers of x, i.e. 
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210 ++++= xaxaxaaxf  and there are many other possibilities 

including exotic functions like wavelets. It is a combination of properties 
of sine waves that makes Fourier decomposition particularly important in 
the analysis of many physical systems. These are: 
 
[1] Sine waves are periodic. There are many systems that show 
periodicity, standing waves being the most obvious, the stock market 
being a less obvious one. Expressing a periodic function in terms of sine 
waves will allow us to capture the behaviour of an infinitely long time 
series in terms of a relatively small number of sine waves, i.e. it will be a 
compact representation which is easier to understand. 
 
[2] Put a sine wave into a linear differential equation, and you will get a 
sine wave of the same frequency out. This is in fact a key property of sine 
waves. If we express a sine wave as ( )tiAex ωℜ= , then the function 

( )tiAeai
dt
dxay ωωℜ==  is also a sine wave of the same frequency, just 

with a different complex constant in front, as is the function 
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and so on. This is a property unique to sine waves (and to their close 
cousins, the exponential functions tAeλ ).  
 
The reason why this is a useful property is that very many systems can be 
analysed in terms of linear differential equations. The fact that sine waves 
“pass through” a linear differential system with only a change in the 
multiplicative constant in front of them is so important it has been given a 
name: sine waves are said to be the eigenfunctions of linear differential 
systems, and many results can be derived from this fact. One result is that 
we can use linear systems theory to simplify our understanding of a 
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cascade of different systems. For example, if we are trying to analyse the 
effect of a car suspension system on the ride quality felt by a person 
inside the car, we need to consider the effect of the tyres, the suspension 
system, the transmission of vibrations through the car body and the 
springiness of the seats. 
 
 
 
 
 
 
 
 
If we assume that all the parts of the car can be modelled as linear 
differential systems, then when we analyse the effect of a sinusoidal road 
surface, we find that the effect of the suspension is particularly easy to 
calculate: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If it is true (and it is) that any road surface can be considered as the sum 
of a set of sinusoidal road surfaces, then the recipe for understanding the 
effect of the system as a whole is: 
 
(a) Split the road surface into a series of sine waves (Fourier Analysis) 
(b) Calculate the effect of the system as a whole on each sine wave in 

turn (multiply by a constant, known as the system gain  for that 
frequency or the transfer function at that frequency). 

(c) Add the resulting sine waves back together (Fourier Synthesis). 
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The beauty of this method is that if a new system is added to stage (b), for 
example if the response of the human body to vibrations becomes an 
important factor, you just need to multiply the constant in step (b) by the 
appropriate constant for the human body and you have now solved the 
new problem. Also, if the type of road surface changes, you only need to 
change step (a) rather than redoing the whole calculation.  
 
If we consider the specific problem of wave propagation, then the wave 
equation we have been dealing with so far turns out to be a special case: it 
is called a dispersionless wave equation. There exist other wave 
equations which are called dispersive wave equations. These are linear 
partial differential equations where sine waves of different frequencies 
propagate at different velocities. In this case, it is not easy to analyse the 
wave propagation in terms of the propagation of pulses, because the 
pulses tend to spread or disperse, hence the name. Instead, analysis in 
terms of sine waves becomes the only easy way to understand what is 
going on. 
 
[3] Another property of sine waves that makes them useful is related to 
the property above, but is worth mentioning separately. It is that shifting 
or delaying a sine wave by a fixed amount in space or time is equivalent 
to multiplying it by a complex factor.  
 

{ } { }]exp[]exp[)](exp[ titiAttiA ωωω ∆ℜ=∆+ℜ  
 
In many situations in wave propagation, many copies of a given wave that 
have been delayed by different amounts arrive at a given point. For 
example, consider the diffraction from a mask with 3 slits: 
 
 
 
 
 
 
 
 
 
 
 
The resultant wave at that point is then, by superposition, the sum of these 
shifted copies. If we analyse this in terms of arbitrary pulses, then we 
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need to compute the effect of the shape of the pulse for each shift and this 
rapidly becomes quite complicated.  
If we consider a sine wave, the shifted waves consist of the same 
exponential with different complex multiplying factors, so the final wave 
is just a scaled version of the original wave  
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This property will be seen to be important in diffraction calculations. 
 
[4] One further property is that if the system we are analysing is non-
linear, then analysing it in terms of sine waves is still useful. This is 
because a non-linear function of a sine wave tends to give a scaled 
version of the sine wave plus other sine waves at harmonic frequencies. 
For example, if we take a quadratic function acting on a sine wave: 
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3.3 Development of the argument 
 
We will proceed as follows: first we will analyse periodic functions, 
because decomposition of these functions into sine waves would seem to 
be natural. The expansion is into a discrete set of sine waves called a 
Fourier Series. Then we consider functions that are not periodic, and 
show that they can be treated as the special case of a periodic function 
where the period of repetition is infinite. The expansion is then into a 
continuous set of sine waves, where the difference in frequency between 
one sine wave and its next nearest neighbour is infinitesimally small. This 
is called a Fourier Transform. We will then show there are many useful 
“tricks” that can be done with a Fourier Transform, chief amongst these 
being a convolution. Finally, we show that a Fourier series is in turn just a 
special case of a Fourier Transform! 
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3.3 Periodic functions: Fourier series 
 
Consider a function f(x) which is periodic in x, repeating itself in a 
distance l.  
 

 
 
This function can, in general, be written as a sum of sinusoids: 
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The term corresponding to A0 is the average value of the waveform. This 
term is some times referred to as the constant or D.C. term. The term 
corresponding to n=1 is commonly called the fundamental or first 
harmonic and all the terms corresponding to n>1 are called the nth 
harmonic or the n-1th overtone. The coefficients An and Bn are called 
the amplitudes of the harmonics. For the waveform shown, the average 
value is zero, so A0=0, and the values for the harmonics are A1=1, B1=1, 
A2=1, B2=0, and An, Bn=0 for n>2. 
 
To find out what the values of the coefficients are for an arbitrary 
function, we make use of the fact that the integral over a complete cycle 
of products of sine waves with cos waves are zero: 
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and the products of cos waves with cos waves and sine waves with sine 
waves integrate to zero except when they are of the same frequency 
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Multiplying equation (3.1) through by 







l
mxπ2cos  and integrating, we get 
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Most of the terms integrate to zero giving 
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Similarly, multiplying by 
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mxπ2sin  and integrating gives 
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An alternative way of presenting a Fourier series is in terms of complex 
exponentials. This has the advantage of being more symmetric and 
therefore easier to remember. Computations with complex exponentials 
tend to be easier than using cos’s and sine’s. Remembering that 
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We can identify )/2( lnπ  as the wave-number k of the harmonic wave 
component, so 
 

( ) ( ) xexf
l

kC ikx
l

l
d1 2/

2/

−

−
∫=  

 
 
 
Example: The function shown below repeats in distance l. Find the 
complex Fourier Series coefficients for this function   

 
Answer: 
 
In the range 2/2/ lxl <<−  we have 
 

Axf =)(         –l/8 < x < l/8 
                                               = 0           l/8 < x < l/2 
 
Then                  
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Defining the sinc function as 
 

x
xx sin)(sinc =    (3.4) 

                                                            
  we get                                                                   

                                                           )8/(sinc
4
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Alternatively we can write in terms of the nth harmonic coefficient 
                            

( ) ( )4/sinc
4
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ππ nAnACn ==   (3.5) 

 
This is zero whenever n is an integral multiple of 4. We can plot the 
coefficients as a function of coefficient number as 

 
 
 
3.5 From Fourier Series to Fourier Transforms 
 
To reiterate the results from the last section, we can represent a periodic 
function of x as the sum of a series of sinusoids. We can plot the 
coefficients Cn of the sinusoids as a function of the coefficient number n, 
or of the wave-number k, where lnk /2π=  and l  is the repeat interval. 
We can consider these as two representations of the same function, one in 
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the x-domain, and one in the k-domain. The x-domain function is 
continuous, whereas the k-domain function only has values at a discrete 
set of points. 
 
We now come to generalise this result to functions that are not repetitive. 
We do this by defining a function which does not repeat as the limit of a 
repetitive function as the repeat interval tends towards infinity. For 
simplicity we consider the Fourier representation of a fixed-width square 
pulse as the interval between pulses gets longer and longer: 
 
 

 
The n’th Fourier coefficient for a repeat interval of l will be given by 
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or as a function of k as 
( ) ( )kd/2sinc/)( ldkC =       

 
We can plot these coefficients as a function of wave-number k for 
different values of the repeat interval l : 
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As the repeat interval gets longer and longer, the spacing between the 
Fourier coefficients gets smaller and smaller. In the limit that the repeat 
interval is infinite, the k-space representation goes from being a set of 
coefficients at a discrete set of frequencies to being a continuous function 
of k. We call this continuous k-space function F(k) the Fourier 
Transform of the x-space function f(x). We normalise F(k) so that  
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For the square pulse in the example above, we get 
 

( )kd/2sinc)( dkF =  
 

To get back to the x-space function from the k-space “coefficients”, our 
summation becomes an integration: 
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where the factor of π2/1 comes from the fact that the k-space density of 
frequency points is given by 
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Thus we have two almost-symmetric equations defining a forward 
Fourier Transform 
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and the inverse Fourier Transform 
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We can make these equations more symmetric by writing them in terms of 
the spatial frequency  
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In this case we get 
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Unfortunately, there is no one standardised way of normalising the 
Fourier Transform, and there are two other commonly-used pairs of 
equations: 
 

∫ −=
∞

∞−
dxikxxfkF )exp()(

2
1)(
π

 

∫=
∞

∞−
dkikxkFxf )exp()()(  

and 
 

∫ −=
∞

∞−
dxikxxfkF )exp()(

2
1)(
π

 

∫=
∞

∞−
dkikxkFxf )exp()(

2
1)(
π

 

 
To avoid confusion, we will use equations (3.6) and (3.7) whenever we 
do Fourier Transforms. 
 
If x is a spatial coordinate with units of metres then k (or s) has units of 
1/distance (m-1) and so k-space is often called reciprocal space (x-space 
is called real space). If x is replaced by a time coordinate in units of 
seconds then s can be replaced by a frequency f (or k with an angular 
frequency fπω 2= ) with units 1/time (Hz). The two representations are 
then called the time-domain representation and the frequency-domain 
representation of a given waveform respectively.  
 
We will adopt the convention that lower case letters denote real-space or 
time-domain functions and upper case letters denote the Fourier 
Transforms of these functions, e.g. 
 

{ }
{ } )()(...

)()(..
thfHTFI

sGxgTF
=

=
 

 
An alternative convention is to use a tilde to represent the transformed 
function )(~ sg . We will use both conventions as necessary. 
 
3.6 Interpretation of the Fourier transform of a function 
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If g(t) is a time-domain waveform, then G(f) for some particular 
frequency f1 can be interpreted in terms of the output of a narrow-band 
filter tuned to frequency f1: 
 
 
 
 
 
 
 
 
 
 
 
G(f1) will in general be a complex number which we can represent as a 
vector in the Argand diagram.  
 
 
 
 
 
 
 
The magnitude of this vector )( 1fG will give the amplitude of the sine 
wave output of the filter, whereas the phase of the vector )](arg[ 1fG=θ  
tells us the phase shift of the sine wave with respect to one centred at the 
origin (t=0). 

ASIDE: to be strictly accurate, we need to represent any real (in both 
senses of the word!) filter as a combination of two narrow functions of 
frequency, one at frequency f1 and one at the symmetric frequency –f1. If 
g(t) is a real function, then we can show that G(f) is Hermitian, i.e. that 

*
11 )()( fGfG =−  for all f1. Hence the output of the filter will be 

proportional to  
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This function is a sine wave with a maximum when θπ −=tif12   
END OF ASIDE 
 
Example: A capacitor is charged very rapidly and then discharged 
through a resistor. The voltage across the capacitor is fed to a bank of 
narrowband electronic filters tuned to a range of different frequencies. 
Sketch the amplitude and phase of the filter outputs as a function of the 
frequency of the filter. 
 
 
 
 
 
 
 
 
 
 
 
 
Answer: The voltage across a capacitor of capacitance C discharging 
through a resistance R is )/exp()( 0 τtvtv −=  where 0v  is the initial 
voltage and the time constant τ  is given by RC=τ . 
 
 
 
 
 
 
The frequency-domain representation of this function is 
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Writing 002/1 ωπτ == f  we get 
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We notice that this is the same functional form as the frequency response 
of a low-pass filter, and one way to make low-pass filters is using a 
resistor-capacitor network! The magnitude of this function )( fV is 
approximately constant at 00 /ωv  at low frequencies 0ωω <<  and 
approximately proportional to ω/1  at high frequencies 0ωω >> . 
 
 
 
 
 
 
This represents the amplitude of the output of a filter as a function of the 
filter frequency. 
 
The phase of this function, and hence of the output of a filter at a given 
frequency, is approximately zero at low frequencies, and 90° at high 
frequencies: 
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3.7 Delta functions 
 
The narrowband filters in the previous example are an instance of a 
common requirement, namely to take a small sample of a continuous 
function, whether taking a narrow range of frequencies around some 
centre frequency or taking a sample of the instantaneous value of a 
continuous time series. We can represent this as taking an integral over a 
very small region of the function being sampled. We can invent a 
sampling function which multiplies the input function before the 
integration takes place: 
 
 
 
 
 
The best sort of sampling function would be one that is as narrow as 
possible, but still contains finite area. We can imagine this as the limit of a 
“tophat” function of unit area as the width of the tophat gets smaller and 
smaller. 
 
 
 
 
 
 
 
 
The limit of this sequence, a “spike” that is infinitely narrow and infinitely 
high, we call a delta function. We cannot write down a functional form 
for this function, because of the infinities involved, but we can define it in 
terms of its integral properties: a delta function )(xδ  is that function 
which, when multiplied by any other function and integrated, “picks out” 
the value of the other function at 0=x  
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We can also use a shifted delta-function to pick out the value of a 
function at a non-zero value of x: 
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The inverse Fourier Transform of a delta-function in frequency space is a 
complex exponential in the time domain, because the delta-function picks 
out a single frequency out of the infinite set of possible frequencies: 
 

{ } ∫ =−=− ∞
∞− )2exp()()2exp()(I.F.T 000 tifdfffiftff πδπδ   (3.9) 

 
Hence the Fourier Transform of a complex exponential is a delta function. 
 
3.8 Convolution 
 
In our last example, we considered a capacitor that was charged very 
rapidly and then allowed to discharge through a resistor. We can think of 
the charging process as a being very sharp pulse of current, injecting a 
charge of I∆t=Q=v0C, where v0 is the voltage on the capacitor at the 
beginning of the discharge phase. It is natural therefore to represent this 
sharp pulse of current as a delta-function in time, since it has finite area 
(the charge) but lasts for no time (or at least a time which is so short that 
we cannot tell, or do not care, how long it lasts). There are many similar 
so-called impulsive phenomena, for example a mechanical impulse (like a 
sharp kick) that imparts a finite momentum in an arbitrarily short time. A 
system’s response to an impulse typically lasts for a finite time, for 
example in the case of the capacitor-resistor network we get an 
exponential decaying voltage with a characteristic time constant RC=τ . 
We call this the impulse response function, r(t).  
 
 
 
 
 
 
 



 - 19 - 

If we now consider what happens if we give the system two kicks in 
succession, we will get the sum of two copies of the impulse response 
function shifted in time with respect to each other. 
 
 
 
 
 
 
 
 
 
We can imagine the system’s response to a general input waveform i(t) as 
being the response to a stream of impulses spaced by a time short 
compared to the characteristic timescale of the impulse response function. 
 
 
 
 
 
 
 
 
 
The output o(t) at any given time t is then the sum of many samples of the 
response function shifted by many different time intervals. Each sample is 
scaled by the size of the impulse generating it, and hence by the value of 
the input function at a given time in the past. 
 
 
 
 
 
 
 
 
The output is therefore given by 
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We have taken the liberty of changing the lower limit of n from 0 to ∞− , 
because r(t) is zero for t<0, and we are anticipating applying our results to 
spatial impulse response functions, where there can be a response in both 
the x>0 and x<0 directions (in temporal response functions, this would 
correspond to clairvoyance). 
 
Taking the limit as t∆  tends to zero, we get 
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The operation in equation (3.11) is given a name: convolution. The 
function i(t) is said to be convolved with the function r(t) and it is written 
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Equations of this form are extremely common in so-called linear shift-
invariant systems.  
• Shift invariant system ⇒ “kick” the system at widely-separated times 

(or spaces) and you get the same response repeated. 
• Linear shift invariant system ⇒ kick the system at closely-spaced 

times and you get the sum of the responses. 
 
Convolution is important in imaging systems where convolution can be 
thought of as a blurring process. The impulse response function is called 
the point spread function (PSF). The most dramatic illustration of the 
effects of changing the PSF was the initial optical error with the Hubble 
Space Telescope and its subsequent repair.  
 
To get a visual idea of the meaning of a convolution, let us take as an 
example the convolution of two functions f1(x) and f2(x), where f1 is a 
tophat function and f2 is a “wedge” (a simplified version of the 
exponential function in our previous example) 
 

  
 
The convolution to be evaluated is 
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∫ −=
∞

∞−
duuxfufxh )()()( 21  

The graphical procedure for doing this convolution is 
 
1. Flip one of the functions about the y axis. 
2. Slide this function past the other function in a series of steps. 
3. At each step (corresponding to one value of x ), multiply the two 

functions together. 
4. Integrate the area under the resulting curve (the u  integral). This 

roughly corresponds to the overlap area of the two curves. 
5. Plot the resulting value as the y-value of the convolution for the given 

value of x . 
6. Repeat for a new value of x  
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Example: Calculate the convolution of a “tophat” function with itself. 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
When one of the functions is considerably narrower than the other, we 
can think of a convolution as a smoothing or averaging process: the value 
of the convolution at a given point is a running average of the 
neighbouring points in the wider of the two functions, with the weights 
depending on the shape of the narrower function. Hence convolution can 
be thought of as a filtering process. 
 
 
 
 
 
 
 
 
Convolving a function with a delta function at the origin has no effect, 
since the delta function is clearly the perfect impulse response function. 
However convolving a function with a shifted delta function will shift that 
function by the amount the delta function has been shifted: 
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])[()()()(
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xxf

duxxuufxxxf

−=
∫ −−=−∗ ∞

∞− δδ
  (3.12)  
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3.9 Convolution and Fourier Transforms 
 
The reason why we have mentioned convolution in a section on Fourier 
Transforms is that the convolution is particularly easy to do in with the 
Fourier Transform: the Fourier Transform of the convolution of two 
functions is obtained by simply multiplying their Fourier Transforms: 
 

{ } { } { })(..)(..)()(.. xgTFxfTFxgxfTF ×=∗    (3.13) 
 

i.e. if )()()( xgxfxh ∗= , then )()()( sGsFsH = . This is such an 
important result it is worth proving. This is easiest to do by calculating the 
inverse Fourier Transform of F(s)G(s): 
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We can do the integral over s by making use of the fact that the Fourier 
Transform of a complex exponential is a delta function: 
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This result (called the convolution theorem) means that any system that 
obeys a convolution relationship between its inputs and outputs can be 
easily analysed in the Fourier domain. Any sine waves at the input are 
transformed to sine waves at the output simply by multiplying by the 
Fourier Transform of the impulse response function: 
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The Fourier Transform R(f) of the impulse response function r(t) is called 
the frequency response function or the modulation transfer function 
of the system. The value of R(f) at a given frequency tells us how much a 
sine wave at that frequency will be amplified or attenuated when passing 
through the system. When several such systems are cascaded together we 
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merely need to multiply the frequency response functions of the systems 
together, i.e. we convolve their impulse response functions.  
 
An example is the R-C circuit analysed earlier. We showed that this has an 
impulse response that is a decaying exponential. The frequency response 
function of this circuit is the Fourier Transform of this exponential and 
we have already shown that this is the functional form of a low-pass 
filter.  
 
 
 
 
 
 
If we cascade two such filters, we get a filter that “cuts off” twice as fast: 
 
 
 
 
 
 
 
 
 
 
3.10 Doing Fourier Transforms in practice 
 
For the majority of this course, we will try to avoid wherever possible 
having to do Fourier Transforms by doing integrals. Instead, we will 
make use of a few “building-block” Fourier Transforms and combine 
them using the various properties of the Fourier Transform that we will 
elucidate in this section.  
 
First a table of building-block transforms, stated in their simplest possible 
forms: 
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f(x) F(s) 

Shifted delta-function  
)( 1xx −δ  

 
 
 
 
 

Complex exponential 
)2exp( 1sixπ−  

 
 
 
 

Tophat function 

otherwise 0

-  where1)( 2
1

2
1

=

<<= xxf
 

 
 
 
 
 
 

Sinc function 
)/()sin( ss ππ  

Exponential function 

elsewhere              0
0   where)exp()(

=
>−= xxxf

 

Low-pass filter 

isπ21
1

+
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Gaussian 
)exp( 2x−  

Gaussian 
)exp( 22sππ −  

 
 
 
 
 
 
 
 

Comb function 

∑ −
∞

−∞=n
nx )(δ  

 
 
 
 
 
 
 

Comb function 

∑ −
∞

−∞=n
nx )(δ  

 

 
 
 
Properties of the Fourier Transform: 
 
1. Reciprocity: If you know how to do the forward transform of a 

function, you can do the inverse transform of the same function, with 
the addition of a minus sign. If the F.T. of f(x) is g(s), then the I.F.T. 
of f(s) is g(-x). 
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2. Linearity: )()()}()({. sbGsaFxbgxafTF +=+  
 

 
 

 
3. Scaling law: )()}/(.{. asaFaxfTF =  

 

 
 
4. The convolution theorem: )()()}()(.{. sGsFxgxfTF =∗  and its 

inverse )()()}()(.{. sGsFxgxfTF ∗=  
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Example 1: What is the Fourier Transform of (a) )2cos( 0tfπ  (b) 
)2sin( 0tfπ ? 

 
Solution: (a) We know that 
 

{ } )()2exp(F.T. 00 fftif −= δπ  
 
and that  

)]2exp()2[exp()2cos( 002
1

0 tiftiftf πππ −+= , 
so from linearity, 
  

{ } )]()([)fcos(2F.T. 002
1

0 fffft ++−= δδπ  
 
 
 
 
 
 
 
 
 
(b) Similarly, the F.T. of )2sin( 0tfπ  is 
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Example 2: What is the Fourier Transform of )exp(1 2x−− ? 
 
 
 
 
 
 
Solution: From linearity we know that we just need to subtract the F.T. of 
the Gaussian from the F.T. of 1. But what is the F.T. of 1? The answer is 
to notice that the complex exponential )2exp( 0xisπ  is unity everywhere 

when s0=0. So the F.T. of 1 is )(sδ , and the F.T. of )exp(1 2x−−  is 

)exp()( 22ss ππδ −−  
 
 
 
 
 
 
 
 
Example 3: In amplitude modulated (A.M.) radio transmission, the 
transmission consists of an electromagnetic carrier wave 

)2cos()( 0tfAtE π= , where 0f  is a radio frequency of several megahertz, 
multiplied by the signal to be transmitted. If the signal to be transmitted is 
a Gaussian pulse of FWHM (Full Width to Half Maximum) τ , what is the 
frequency representation of the radio wave? 
 
Solution: The signal is a classic wave packet, 

)2cos()]/[exp()( 0
2 tfAattE π×−= , where a is related to the width of the 

Gaussian.  
 
 
 
 
 
 
From the convolution theorem, we know that the Fourier Transform of 
this function will be the convolution of the F.T. of the Gaussian and the 
F.T. of the cos function. From the scaling property of the F.T., we get that 
the F.T. of the Gaussian is )][exp( 2faa π− , and  from the previous 
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example, we know that the F.T. of the cos wave is 2 delta-functions. 
Convolving with a delta function is easy, since we just shift the function 
being convolved by the shift of the delta function: 
 
 
  
 
 
 
 
We have been given the FWHM, which is defined as the distance between 
the points at which the Gaussian has fallen to half of its peak value. 
 
 
 
 
 
So we have 2

12 )]2/[exp( =− aτ  i.e. 2ln2/ =aτ , hence )2ln2/(τ=a . 

The Gaussian in frequency space is proportional to )]/[exp( 2bf−  where 
ab π/1=  so the FWHM of this Gaussian is πτπ /1/2ln22ln2 == ab .  

 
This example illustrates the general result that the frequency spread of a 
function is inversely proportional to the time spread of a function. If the 
radio station wants to transmit very fast pulses, it must get a large 
frequency allocation. If these pulses denote digital ones and zeros, then 
the rate at which information can be transmitted will be proportional to 
the bandwidth available – this is one of the fundamental results of 
information theory. 
 
Another of the consequences of this inverse proportionality is the 
quantum uncertainty principle. The quantum representation of the 
position of a particle is as wavepacket in space, and the momentum of the 
particle is represented as the Fourier Transform of this wavepacket. If the 
position of the particle is confined to a small region in space, then the 
momentum spread is large, and vice-versa. 
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3.11 Fourier transforms and symmetry 
 
The Fourier transform can be written in terms of cos and sin as: 
 

[ ]∫ += ∞
∞− dxsxisxxfsF )2sin()2cos()()( ππ    (3.13) 

 
The different symmetries of the cosine and sine can be used to derive a 
set of symmetry rules for Fourier transforms. These symmetries allow us 
to infer the general properties of a system involving a Fourier transform 
without having to explicitly evaluate any integrals, and can be used the 
check the results of a transform calculation.  
 
We say that a function has even symmetry if )()( xfxf −=  and it has 
odd symmetry if )()( xfxf −−= , or alternatively we can call them 
symmetric  and antisymmetric  respectively.  
 
 
 
 
 
 
 
 
The cosine is an even function, and the sine function is an odd function. 
Thus we get the following results: 
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We can substitute these results into equation (3.13) to show that the 
Fourier transform of any function which is real and even is itself real and 
even, and that the Fourier transform of a function which is real and odd is 
imaginary and odd. 
 
Now any real function )(xf can be written as the superposition of a real, 
even function and a real, odd function: 
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( ) ( ))()(
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1)()(

2
1)( xfxfxfxfxf −−+−+=  

 
This means that the F.T. of any real function is the sum of an even real 
part and an odd imaginary part, i.e. it is Hermitian )()( * xfxf −= . 
 
The relationships between the symmetries of a function and its (forward 
or inverse) Fourier Transform can be summarised as: 

 

Hermitianreal
odd imaginary,odd real,

evenreal,even real,

⇔
⇔
⇔

 

 
 
 
 
3.12 Higher-dimensional Fourier Transforms 
 
A Fourier transform can be defined in any number dimensions. In two 
dimensions the forward transform is defined as 
 

∫ ∫ += ∞
∞−

∞
∞− dxdyysxsiyxfssF yxyx ])[2exp(),(),( π   (3.14) 

 
and the inverse transform is defined as 
 

∫ ∫ += ∞
∞−

∞
∞− yxyxyx dsdsysxsissFyxf ])[2exp(),(),( π  (3.15) 

 
Noticing that ysxs yx +  can be written as xs rr. , where ),( yx sss =

r
 and 

),( yxx =r
, we can also write these equations in vector form as 

 
 

∫=

∫=

space all

space all

).2exp()()(

).2exp()()(

sdAxsisFxf

dAxsixfsF

rrrr

rrrr

π

π

 

 
where dA is an area element in xr  space and dAs is an area element in sr  
space. 
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Any one spatial-frequency component, ).2exp( 0 xsi
rr

π  is a 2-dimensional 

sine wave in x space with the wave crests perpendicular to 0sr  and crest 
separation ||/1 0s

r
. 

 
 

 
 
 
If ),( yxf  is separable , i.e. if 
 

)()(),( yfxfyxf yx=  
 

then we can do the transform as the product of 2 one-dimensional 
transforms: 
 

∫ ∫= ∞
∞−

∞
∞− dyyisyfdxxisxfssF yyxxyx )2exp()()2exp()(),( ππ  

 
Example: What is the Fourier Transform of a 2-dimensional square 
tophat of unit width? 
 
 

 
 
 
Solution: A square tophat can be written as a separable function. If a 1-d 
tophat function of unit width can be written as )(x∏  then a 2-d square 
tophat function can be written as )()(),( yxyxf ∏∏= . The Fourier 
Transform is then  

)(sinc)(sinc),( yxyx ssssF ππ=  
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3.13 Convolutions in higher dimensions 
 
These are a natural extension of convolutions in 1-D. In 2-D we have 
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Writing this in vector form with ),( yxx =r

 and ),( vuu =r
 we have 

 
∫ −=
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An example of the use of convolution in 3-D is to describe a crystal, with 
an arrangement of atoms repeated in space. If we write down a function 
for, say, the distribution of electrons in space, we can write it as the 
convolution of a function representing the distribution of electrons in a 
unit cell, and an array of 3-D delta functions which describe the layout of 
the unit cells 
 
 
 



 - 35 - 

3.14 Deconvolution 
 
Another application of the convolution theorem is in deconvolution.  
In many physical systems, a signal can go through a “blurring” process of 
one sort or another which reduces the amount of detail which is 
discernible. Examples of this are:  
• In 1-D: the transmission of radio or TV signals where the signal can 

take multiple different paths between the transmitter and the receiver 
due to reflections off buildings etc. What the receiver then sees is the 
sum of multiple copies of the signal with different time delays – 
“ghosting”. 

 
 
 
 
 
• In 2-D: imaging systems where imperfections in the optics etc blur the 

detail in the image. 
 
 
We would like to be able to remove the effects of blurring by “undoing” 
the convolution. We can do this deconvolution easily in the Fourier 
domain: convolution in the Fourier domain is a multiplication, so 
deconvolution is just a division. 
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In practice, deconvolution is not as simple as this, because the wherever 
the frequency response function of the system is low, we end up 
multiplying the data by a large number, and this tends to amplify the noise 
in the image.  In the case where the frequency response function goes to 
zero, we cannot do deconvolution at those frequencies: information has 
been lost. 


